Jul July

Concerning the determination of the sensitivity of hotwire anemothermometers in supersonic flows

Jean Gaviglio,

Translation of "Mecanique des Fluides. --Sur la determination des sensibilites des anemothermometres a fil chaud en ecoulements supersoniques", Comptes Rendus de l'Academie des Sciences Paris, Series A, Vol. 273, No. 14, 1971, pp. 634-637.

(NASA-TT-F-14458) CONCERNING THE

DETERMINATION OF THE SENSITIVITY OF HOT

WIRE ANEMOTHERMOMETERS IN SUPERSONIC FLOWS

J. Gaviglio (Kanner (Leo) Associates) Mar.

Unclas

1972 6 p

CSCL 14B G3/14 43746

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D.C. 20546 MARCH 1972

C. R. Acad. Sc. Paris, (T. 273, No. 14), 1971, pp. 634-637.

Concerning the determination of the sensitivity of hotwire anemothermometers in supersonic flows.**

рy

Jean Gaviglio,

Two methods are mentioned which are used to determine the sensitivity of hot-wire anemothermometers used to analyze the turbulence of supersonic flows. One method is imprecise with the lower Reynolds' numbers, but the application is relatively easy; the other is precise, however, difficult to implement. New results from experiments allow the respective advantages of these two methods to be combined.

1. The sensitivity to longitudinal fluctuations (pu)' of the amount of movement pu, and T_0 of the stopping temperature T_0 of a wire perpendicular to a supersonic flow of Mach 1.25 < M < 5 are favorably determined with the aid of experimental methods which take into account the heat losses of the wire through the pins on which the wire is soldered $\int (4)$ to (6)7.

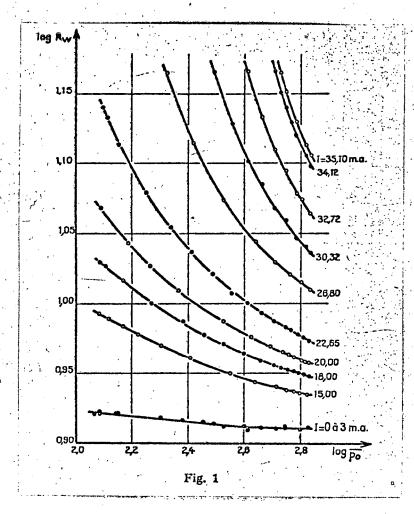
 $R_{\mathbf{w}}$ and $T_{\mathbf{w}}$ are the electric resistance and the temperature of

^{*}Meeting of August 23, 1971.

^{**}Institut de Mécanique statistique de la Turbulence, Laboratoire associé au C. N. R. S., 12, avenue du Général-Leclerc, 13-Marseille, 3e, Bouches-du-Rhône, and Office National d'Etudes et de Recherches Aerospatiales, 92-Chatillon-sous-Bagneux, Hauts-de-Seine.

the wire heated by a current of constant intensity I; R_0 and T_0 are the limits of R_W and T_W when $I \rightarrow 0$; $\overline{a}_W = (R_W - R_0)/R_0$ is the coefficient of superheating; Nu_0 is the Nusselt number corresponding to T_0 .

The problem is to determine


which are assumed to be independent of M, such as when the lengthening $1/d \rightarrow \infty(2)$. F is akin to a, G decreases if $\sqrt{2}$ increases. The properties depend on the Reynolds' number $R_{1/2} = \rho \omega / \mu_0$ corresponding to T_0 .

- 2. Two methods are considered.
- 2.1 The first (3) expresses F and G in a general form which is only then workable when the network of curves $Nu_o(\sqrt{R_{do}}, T_w/T_c = Ct_c)$ is assimilable in a bundle of straight lines converging in one point $\sqrt{R_{do}}$ of the axis of abscissae: this condition is realized when R_{do} is greater than a R_{do} limit whose determination is imprecise and which depends on the "end effects."

When $Q_{lo} < Q'_{lo}$, one commits an error difficult to estimate.

- 2.2. The second method (4) provides F and G by derivation from the network of curves yielding R_W (ρ u) for T_0 = Cte and R_W (T_0) for $\overline{\rho}_0$ = Cte, $\overline{\rho}_0$ being the stopping pressure; the parameter is I.
- 2.3. When $a_0 \rightarrow 0$, $F \rightarrow F_0$, the expressions of F_0 deduced from methods I and II are identical. The same is true for G_0 , the limit of G_0 .
- 3. A synthesis of the two methods was researched to attempt to combine their advantages; the synthesis relied on several observations.

In view of the determination of F, we present below the tare of a platinum-covered tungsten wire; length, l=0.7 mm; diameter, d=2.5 μ ; $T_0=295$; M=2.3.

- Figure 1 shows the network of curves $(\log R_{\omega}; \log \overline{P_c})_{\overline{l_c}}$:
- A series of experiments made for different values of $R_{\rm L}$ has shown that the curves $F(\bar{a}_{\rm L}')$ determined by methods I and II differ the less that $R_{\rm L}$ is higher, and become coincident when $R_{\rm L} \geq 8$ which establishes $R_{\rm L}' = 8$. Figure 2 provides an example of the results for $R_{\rm L} = 4.3$, the two methods provided different values of F, especially with higher values of $\bar{a}_{\rm L}'$; for $R_{\rm L} = 11.4$, the values

- It was verified that no matter what the length 1/d, Fo decreases when Q_d increases and for all practical purposes cancels itself for $Q''_d = \lambda Q'_d$. For $1/d \rightarrow \infty Q'_d$ would be on the order of 20.

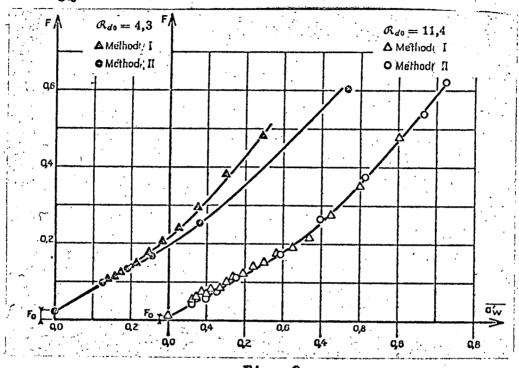


Fig. 2

- Figure 3 shows that F, determined by method II, depends little on \mathbb{R}_{loc} and by the intermediary of Fo. In posing $F(\overline{a}'_{loc}, \lambda \mathbb{R}_{loc}) = \overline{F}_{loc}(\overline{a}'_{loc})$, F can be represented by an expression such that

$$F(\bar{a}'_{\omega}, \lambda R_{do}) = F_{1}(\bar{a}'_{\omega}) + \frac{F_{0}(R_{do})}{1 + C\bar{a}_{\omega}^{2}},$$

where C is a constant whose worth here is approximately 10.

- The experimental tare method reduces itself to: $F_{i}(\overline{a}_{i,j})$ is determined by method I (at a Reynolds' number of $R_{i,j} \supseteq \Im R'_{i,j}$); to which one adds the correction due to $F_{i,j}(R_{i,j})$.

The coefficient G can be determined by method I, noting that

its expression contains on the one hand terms which can be measured without any error specifically due to \mathcal{R}_{do} , while on the other hand there is a term proportional to F which may be computed by the aforementioned relation.

References

(1) L. Kovasznay et S. Tornmack, J. H. Univ., Repl., 127, 1950.

(2) J. LAUFER et R. Mc CLELLAN, J. P. L. Rept., 20-101, 1955; Revised 1957.

(2) M. Morkovin, Agardograph, 24, 1956.

(1) J. GAVIGLIO et H. BURNAGE, T. P. ONERA, 417, 1966.

(*) F. DEWEY, A. R. S. Journ., 1961, p. 1709.

(4) H. Burnage, Comples rendus, 271, série A, 1970, p. 384.

Institut de Mécanique statistique
de la Turbulence,
Laboratoire associé au C. N. R. S.,
12, avenue du Général-Leclerc,
13-Marseille, 3e,
Bouches-du-Rhône.
et (a n ol.)
Office National d'Études
et de Recherches Aérosptiales,
92-Châtillon-sous-Bagneux,
Hauts-de-Seine.

Translated from the original French for NASA by LEO KANNER Associated, Redwood City, Ca. 94063, February 1972

NOT REPRODUCIBLE